Stellar Spectra¶
Stellar spectra can be generated by combining a Stars
object with an EmissionModel
, translating the properties of the stellar populations (typically initial_masses
, ages
and metallicities
) to a spectral energy distribution.
These models are described in detail in the emission model docs. Here, we’ll use an instance of a PacmanEmission
model for demonstration purposes.
The following sections demonstrate the generation of integrated spectra (which is the same for both parametric and particle Stars
), and per–particle spectra.
[1]:
from unyt import K, Msun, Myr
from synthesizer.emission_models import PacmanEmission
from synthesizer.emission_models.attenuation import PowerLaw
from synthesizer.emission_models.dust.emission import Greybody
from synthesizer.grid import Grid
from synthesizer.load_data.load_camels import load_CAMELS_IllustrisTNG
from synthesizer.parametric import SFH, Stars, ZDist
tau_v = 0.5
# dust curve slope
alpha = -1.0
dust_curve = PowerLaw(slope=alpha)
dust_emission_model = Greybody(30 * K, 1.2)
grid_dir = "../../../tests/test_grid"
grid_name = "test_grid"
grid = Grid(grid_name, grid_dir=grid_dir)
stellar_mass = 10**11 * Msun
sfh = SFH.Constant(max_age=100 * Myr)
metal_dist = ZDist.Normal(mean=0.01, sigma=0.05)
# Get the 2D star formation and metal enrichment history for the
# given SPS grid. This is (age, Z).
stars = Stars(
grid.log10age,
grid.metallicity,
sf_hist=sfh,
metal_dist=metal_dist,
initial_mass=stellar_mass,
)
# Get the model
pacman = PacmanEmission(
grid=grid,
tau_v=tau_v,
dust_curve=dust_curve,
dust_emission=dust_emission_model,
)
Integrated spectra¶
To generate integrated spectra we simply call the components get_spectra
method. This method will populate the component’s spectra
attribute with a dictionary containing Sed objects for each spectra in the EmissionModel
and will also return the spectra at the root of the EmissionModel
.
[2]:
# Get the spectra using a unified agn model (instantiated elsewhere)
spectra = stars.get_spectra(pacman)
We can plot the resulting spectra using the plot_spectra
method.
[3]:
fig, ax = stars.plot_spectra(show=True, figsize=(6, 4))
The spectra returned by get_spectra
is the “total” spectra at the root of the emission model.
[4]:
print(spectra)
+-------------------------------------------------------------------------------------------------+
| SED |
+---------------------------+---------------------------------------------------------------------+
| Attribute | Value |
+---------------------------+---------------------------------------------------------------------+
| redshift | 0 |
+---------------------------+---------------------------------------------------------------------+
| ndim | 1 |
+---------------------------+---------------------------------------------------------------------+
| shape | (9244,) |
+---------------------------+---------------------------------------------------------------------+
| lam (9244,) | 1.30e-04 Å -> 2.99e+11 Å (Mean: 9.73e+09 Å) |
+---------------------------+---------------------------------------------------------------------+
| nu (9244,) | 1.00e+07 Hz -> 2.31e+22 Hz (Mean: 8.51e+19 Hz) |
+---------------------------+---------------------------------------------------------------------+
| lnu (9244,) | 0.00e+00 erg/(Hz*s) -> 1.07e+34 erg/(Hz*s) (Mean: 3.96e+32 erg) |
+---------------------------+---------------------------------------------------------------------+
| bolometric_luminosity | 4.772754179003649e+46 erg/s |
+---------------------------+---------------------------------------------------------------------+
| bolometric_luminosity | 4.772754179003649e+46 erg/s |
+---------------------------+---------------------------------------------------------------------+
| llam (9244,) | 0.00e+00 erg/(s*Å) -> 5.27e+43 erg/(s*Å) (Mean: 1.32e+41 erg/(s*Å)) |
+---------------------------+---------------------------------------------------------------------+
| luminosity (9244,) | 0.00e+00 erg/s -> 7.48e+46 erg/s (Mean: 1.55e+45 erg/s) |
+---------------------------+---------------------------------------------------------------------+
| luminosity_lambda (9244,) | 0.00e+00 erg/(s*Å) -> 5.27e+43 erg/(s*Å) (Mean: 1.32e+41 erg/(s*Å)) |
+---------------------------+---------------------------------------------------------------------+
| luminosity_nu (9244,) | 0.00e+00 erg/(Hz*s) -> 1.07e+34 erg/(Hz*s) (Mean: 3.96e+32 erg) |
+---------------------------+---------------------------------------------------------------------+
| wavelength (9244,) | 1.30e-04 Å -> 2.99e+11 Å (Mean: 9.73e+09 Å) |
+---------------------------+---------------------------------------------------------------------+
However, all the spectra are stored within a dictionary under the spectra
attribute on the relevant component.
[5]:
print(stars.spectra)
{'nebular': <synthesizer.sed.Sed object at 0x7f0a78ef6740>, 'transmitted': <synthesizer.sed.Sed object at 0x7f0a78ef65f0>, 'incident': <synthesizer.sed.Sed object at 0x7f0a78ef64d0>, 'reprocessed': <synthesizer.sed.Sed object at 0x7f0a78ef6830>, 'attenuated': <synthesizer.sed.Sed object at 0x7f0a78ef68f0>, 'intrinsic': <synthesizer.sed.Sed object at 0x7f0a78ef6500>, 'dust_emission': <synthesizer.sed.Sed object at 0x7f0a78ef64a0>, 'emergent': <synthesizer.sed.Sed object at 0x7f0a78ebba60>, 'total': <synthesizer.sed.Sed object at 0x7f0a78ebb7f0>}
Particle spectra¶
In this example we load some test particle data from CAMELS:
[6]:
# Create stars component object
stars = load_CAMELS_IllustrisTNG(
"../../../tests/data/",
snap_name="camels_snap.hdf5",
group_name="camels_subhalo.hdf5",
physical=True,
)[1].stars
To generate a spectra for each star particle we use the same model, but we need to tell the model to produce a spectrum for each particle. This is done by setting the per_particle
flag to True
on the model.
[7]:
pacman.set_per_particle(True)
With that done we just call the same get_spectra
method on the component, and the particle spectra will be stored in the particle_spectra
attribute of the component.
[8]:
spectra = stars.get_spectra(pacman, verbose=True)
Again, the returned spectra is the “total” spectra from the root of the model.
[9]:
print(spectra)
+-----------------------------------------------------------------------------------------------------+
| SED |
+-------------------------------+---------------------------------------------------------------------+
| Attribute | Value |
+-------------------------------+---------------------------------------------------------------------+
| redshift | 0 |
+-------------------------------+---------------------------------------------------------------------+
| ndim | 2 |
+-------------------------------+---------------------------------------------------------------------+
| shape | (656, 9244) |
+-------------------------------+---------------------------------------------------------------------+
| lam (9244,) | 1.30e-04 Å -> 2.99e+11 Å (Mean: 9.73e+09 Å) |
+-------------------------------+---------------------------------------------------------------------+
| nu (9244,) | 1.00e+07 Hz -> 2.31e+22 Hz (Mean: 8.51e+19 Hz) |
+-------------------------------+---------------------------------------------------------------------+
| lnu (656, 9244) | 0.00e+00 erg/(Hz*s) -> 6.63e+27 erg/(Hz*s) (Mean: 1.27e+26 erg) |
+-------------------------------+---------------------------------------------------------------------+
| bolometric_luminosity (656,) | 1.21e+40 erg/s -> 8.52e+40 erg/s (Mean: 3.71e+40 erg/s) |
+-------------------------------+---------------------------------------------------------------------+
| bolometric_luminosity (656,) | 1.21e+40 erg/s -> 8.52e+40 erg/s (Mean: 3.71e+40 erg/s) |
+-------------------------------+---------------------------------------------------------------------+
| llam (656, 9244) | 0.00e+00 erg/(s*Å) -> 5.21e+36 erg/(s*Å) (Mean: 9.27e+34 erg/(s*Å)) |
+-------------------------------+---------------------------------------------------------------------+
| luminosity (656, 9244) | 0.00e+00 erg/s -> 4.41e+40 erg/s (Mean: 1.21e+39 erg/s) |
+-------------------------------+---------------------------------------------------------------------+
| luminosity_lambda (656, 9244) | 0.00e+00 erg/(s*Å) -> 5.21e+36 erg/(s*Å) (Mean: 9.27e+34 erg/(s*Å)) |
+-------------------------------+---------------------------------------------------------------------+
| luminosity_nu (656, 9244) | 0.00e+00 erg/(Hz*s) -> 6.63e+27 erg/(Hz*s) (Mean: 1.27e+26 erg) |
+-------------------------------+---------------------------------------------------------------------+
| wavelength (9244,) | 1.30e-04 Å -> 2.99e+11 Å (Mean: 9.73e+09 Å) |
+-------------------------------+---------------------------------------------------------------------+
While the spectra produced by get_particle_spectra
are stored in a dictionary under the particle_spectra
attribute.
[10]:
print(stars.particle_spectra)
{'nebular': <synthesizer.sed.Sed object at 0x7f0a78ebaef0>, 'transmitted': <synthesizer.sed.Sed object at 0x7f0a27420a30>, 'incident': <synthesizer.sed.Sed object at 0x7f0a2729d420>, 'reprocessed': <synthesizer.sed.Sed object at 0x7f0a275d82b0>, 'attenuated': <synthesizer.sed.Sed object at 0x7f0a275d82e0>, 'intrinsic': <synthesizer.sed.Sed object at 0x7f0a78ef62c0>, 'dust_emission': <synthesizer.sed.Sed object at 0x7f0a78ef6860>, 'emergent': <synthesizer.sed.Sed object at 0x7f0a78ef6680>, 'total': <synthesizer.sed.Sed object at 0x7f0a78ef6320>}
Integrating spectra¶
The integrated spectra are automatically produced alongside per particle spectra. However, if we wanted to explictly get the integrated spectra from the particle spectra we just generated (for instance if we had made some modification after generation), we can call the integrate_particle_spectra
method. This method will sum the individual spectra, and populate the spectra
dictionary.
Note that we can also integrate individual spectra using the `Sed.sum()
method <../sed/sed.ipynb>`__.
[11]:
print(stars.spectra)
stars.integrate_particle_spectra()
print(stars.spectra)
fig, ax = stars.plot_spectra(show=True, figsize=(6, 4))
{'nebular': <synthesizer.sed.Sed object at 0x7f0a274206a0>, 'transmitted': <synthesizer.sed.Sed object at 0x7f0a2756b6a0>, 'incident': <synthesizer.sed.Sed object at 0x7f0a275d8100>, 'reprocessed': <synthesizer.sed.Sed object at 0x7f0a275d83a0>, 'attenuated': <synthesizer.sed.Sed object at 0x7f0a78ef6620>, 'intrinsic': <synthesizer.sed.Sed object at 0x7f0a78ef6770>, 'dust_emission': <synthesizer.sed.Sed object at 0x7f0a78ef6800>, 'emergent': <synthesizer.sed.Sed object at 0x7f0a78ef6560>, 'total': <synthesizer.sed.Sed object at 0x7f0a78ef63b0>}
{'nebular': <synthesizer.sed.Sed object at 0x7f0a275d8370>, 'transmitted': <synthesizer.sed.Sed object at 0x7f0a275d8430>, 'incident': <synthesizer.sed.Sed object at 0x7f0a2756b6a0>, 'reprocessed': <synthesizer.sed.Sed object at 0x7f0a275d8100>, 'attenuated': <synthesizer.sed.Sed object at 0x7f0a275d83a0>, 'intrinsic': <synthesizer.sed.Sed object at 0x7f0a2756b640>, 'dust_emission': <synthesizer.sed.Sed object at 0x7f0a2729d600>, 'emergent': <synthesizer.sed.Sed object at 0x7f0a2729cbb0>, 'total': <synthesizer.sed.Sed object at 0x7f0a2729cfa0>}
Modifying EmissionModel
parameters with get_spectra
¶
As well as modifying a model explicitly, it’s also possible to overide the properties of a model at the point get_spectra
is called. These modifications will not be remembered by the model afterwards. As it stands, this form of modifications is supported for the dust_curve
, tau_v
, fesc
and masks
.
Here we’ll demonstrate this by overiding the optical depths to generate spectra for a range of tau_v
values. This can either be done by passing a single number which will overide all optical depths on every model.
[12]:
# Since we now want integrated spectra lets remove the per particle flag
pacman.set_per_particle(False)
stars.clear_all_spectra()
spectra = {}
for tau_v in [0.1, 0.5, 1.0]:
stars.get_spectra(pacman, tau_v=tau_v)
spectra[r"$\tau_v " f"= {tau_v}"] = stars.spectra["attenuated"]
Or we can pass a dictionary mapping model labels to tau_v
values to target specific models. Notice that we have invoked the clear_all_spectra
method to reset the spectra dictionary, we can also clear all emissions (including spectra, lines, and photometry if they are present) with the clear_all_emissions
method.
[13]:
stars.clear_all_emissions()
spectra = {}
for tau_v in [0.1, 0.5, 1.0]:
stars.get_spectra(pacman, tau_v={"attenuated": tau_v})
spectra[r"$\tau_v " f"=$ {tau_v}"] = stars.spectra["attenuated"]
To see the variation above we can pass the dictionary we populated with the varied spectra to the plot_spectra
function (where the dictionary keys will be used as labels).
[14]:
from synthesizer.sed import plot_spectra
plot_spectra(spectra, xlimits=(10**2.5, 10**5.5))
[14]:
(<Figure size 350x500 with 1 Axes>,
<Axes: xlabel='$\\lambda/[\\mathrm{\\AA}]$', ylabel='$L_{\\nu}/[\\mathrm{\\rm{erg} \\ / \\ \\rm{Hz \\cdot \\rm{s}}}]$'>)