Generating photometry from a Galaxy
¶
If you are working with a Galaxy
(or many Galaxy
objects) containing multiple spectra, you can use the galaxy level get_photo_lnu
and get_photo_fluxes
methods to generate photometry for all spectra in the galaxy.
Before we can demonstrate this we firs need to make a parametric galaxy with a Stars
and Blackhole
component, define an emission model for a whole galaxy and generate their rest–frame and observed spectra.
[1]:
import numpy as np
from astropy.cosmology import Planck18 as cosmo
from unyt import Myr, kelvin, Msun, Mpc, yr
from synthesizer.emission_models import (
AttenuatedEmission,
BimodalPacmanEmission,
DustEmission,
EmissionModel,
UnifiedAGN,
)
from synthesizer.emission_models.attenuation import PowerLaw
from synthesizer.emission_models.dust.emission import Blackbody, Greybody
from synthesizer.filters import FilterCollection
from synthesizer.grid import Grid
from synthesizer.parametric import SFH, ZDist
from synthesizer.parametric import Stars as ParametricStars
from synthesizer.particle import BlackHoles, Galaxy
from synthesizer.particle.stars import sample_sfzh
# Get the grids which we'll need for extraction
grid_dir = "../../../tests/test_grid"
grid_name = "test_grid"
grid = Grid(grid_name, grid_dir=grid_dir)
nlr_grid = Grid("test_grid_agn-nlr", grid_dir="../../../tests/test_grid")
blr_grid = Grid("test_grid_agn-blr", grid_dir="../../../tests/test_grid")
# Define the metallicity history
zh = ZDist.DeltaConstant(metallicity=0.01)
# Define the star formation history
sfh_p = {"max_age": 100 * Myr}
sfh = SFH.Constant(**sfh_p)
# Initialise the parametric Stars object
param_stars = ParametricStars(
grid.log10age,
grid.metallicity,
sf_hist=sfh,
metal_dist=zh,
initial_mass=10**9 *Msun,
)
# Define the number of stellar particles we want
n = 500
# Sample the parametric SFZH, producing a particle Stars object
# we will also pass some keyword arguments for some example attributes
part_stars = sample_sfzh(
sfzh=param_stars.sfzh,
log10ages=param_stars.log10ages,
log10metallicities=param_stars.log10metallicities,
nstar=n,
current_masses=np.full(n, 10**8.7 / n) * Msun,
redshift=1,
coordinates=np.random.normal(0, 0.01, (n, 3)) * Mpc,
centre=np.zeros(3) * Mpc,
)
# Make fake properties
n = 4
masses = 10 ** np.random.uniform(low=7, high=9, size=n) * Msun
coordinates = np.random.normal(0, 0.01, (n, 3)) * Mpc
accretion_rates = 10 ** np.random.uniform(
low=-2, high=1, size=n
) * Msun / yr
metallicities = np.full(n, 0.01)
# And get the black holes object
blackholes = BlackHoles(
masses=masses,
coordinates=coordinates,
accretion_rates=accretion_rates,
metallicities=metallicities,
)
# And create the galaxy
gal = Galaxy(
stars=part_stars,
black_holes=blackholes,
redshift=1,
)
# Get the stellar pacman model
pc_model = BimodalPacmanEmission(
grid=grid,
tau_v_ism=1.0,
tau_v_birth=0.7,
dust_curve_ism=PowerLaw(slope=-1.3),
dust_curve_birth=PowerLaw(slope=-0.7),
dust_emission_ism=Blackbody(temperature=100 * kelvin),
dust_emission_birth=Blackbody(temperature=30 * kelvin),
fesc=0.2,
fesc_ly_alpha=0.9,
label="stellar_total",
)
# Get the UnifiedAGN model
uni_model = UnifiedAGN(
nlr_grid,
blr_grid,
covering_fraction_nlr=0.1,
covering_fraction_blr=0.1,
torus_emission_model=Blackbody(1000 * kelvin),
label="agn_intrinsic",
)
# Define an emission model to attenuate the intrinsic AGN emission
att_uni_model = AttenuatedEmission(
dust_curve=PowerLaw(slope=-1.0),
apply_dust_to=uni_model,
tau_v=0.7,
emitter="blackhole",
label="agn_attenuated",
)
gal_intrinsic = EmissionModel(
label="total_intrinsic",
combine=(uni_model, pc_model["intrinsic"]),
emitter="galaxy",
)
gal_attenuated = EmissionModel(
label="total_attenuated",
combine=(att_uni_model, pc_model["attenuated"]),
related_models=(gal_intrinsic,),
emitter="galaxy",
)
# And now include the dust emission
gal_dust = DustEmission(
dust_emission_model=Greybody(30 * kelvin, 1.2),
dust_lum_intrinsic=gal_intrinsic,
dust_lum_attenuated=gal_attenuated,
emitter="galaxy",
label="dust_emission",
)
gal_total = EmissionModel(
label="total",
combine=(gal_attenuated, gal_dust),
related_models=(gal_intrinsic),
emitter="galaxy",
)
# Get the spectra
sed = gal.get_spectra(gal_total)
# Get fluxes
gal.get_observed_spectra(cosmo)
We can then combine with a FilterCollection
to generate the galaxy-level photometry.
[2]:
# Get the filter collection
fs = [
f"JWST/NIRCam.{f}"
for f in ["F090W", "F150W", "F200W", "F277W", "F356W", "F444W"]
]
filters = FilterCollection(
filter_codes=fs,
new_lam=grid.lam,
)
# Get the photometry
gal.get_photo_lnu(filters)
gal.get_photo_fnu(filters)
The photometry produced by these methods are stored in the photo_lnu
and photo_fluxes
attributes, either at the base galaxy level or the individual components. These attributes are dictionaries containing the photometry for each spectra key.
For example, on the Galaxy.Stars
object:
[3]:
print(gal.stars.photo_lnu)
print(gal.stars.photo_fnu)
{'attenuated': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055c970>, 'old_attenuated': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055c730>, 'old_reprocessed': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055c7f0>, 'old_nebular': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055c940>, 'old_nebular_continuum': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055de70>, 'old_linecont': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055dc90>, 'old_transmitted': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055dae0>, 'young_attenuated': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055d8d0>, 'young_attenuated_nebular': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055d780>, 'young_reprocessed': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055d5d0>, 'young_transmitted': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055d6c0>, 'young_nebular': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055c670>, 'young_linecont': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055d5a0>, 'young_nebular_continuum': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055d450>, 'intrinsic': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055e020>, 'old_intrinsic': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055d270>, 'old_escaped': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055c910>, 'young_intrinsic': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055d300>, 'young_escaped': <synthesizer.photometry.PhotometryCollection object at 0x7f93f0566dd0>}
{'attenuated': <synthesizer.photometry.PhotometryCollection object at 0x7f93f0566f80>, 'old_attenuated': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055ecb0>, 'old_reprocessed': <synthesizer.photometry.PhotometryCollection object at 0x7f93f0566e90>, 'old_nebular': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055c9d0>, 'old_nebular_continuum': <synthesizer.photometry.PhotometryCollection object at 0x7f93f0566560>, 'old_linecont': <synthesizer.photometry.PhotometryCollection object at 0x7f93f0566ad0>, 'old_transmitted': <synthesizer.photometry.PhotometryCollection object at 0x7f93f055ece0>, 'young_attenuated': <synthesizer.photometry.PhotometryCollection object at 0x7f93a4556fb0>, 'young_attenuated_nebular': <synthesizer.photometry.PhotometryCollection object at 0x7f93a4557490>, 'young_reprocessed': <synthesizer.photometry.PhotometryCollection object at 0x7f93a4557640>, 'young_transmitted': <synthesizer.photometry.PhotometryCollection object at 0x7f93a45577f0>, 'young_nebular': <synthesizer.photometry.PhotometryCollection object at 0x7f93a45579a0>, 'young_linecont': <synthesizer.photometry.PhotometryCollection object at 0x7f93a4557b50>, 'young_nebular_continuum': <synthesizer.photometry.PhotometryCollection object at 0x7f93a4557d00>, 'intrinsic': <synthesizer.photometry.PhotometryCollection object at 0x7f93a4557820>, 'old_intrinsic': <synthesizer.photometry.PhotometryCollection object at 0x7f93a4557b80>, 'old_escaped': <synthesizer.photometry.PhotometryCollection object at 0x7f93a4557d30>, 'young_intrinsic': <synthesizer.photometry.PhotometryCollection object at 0x7f93a4557160>, 'young_escaped': <synthesizer.photometry.PhotometryCollection object at 0x7f93a4557ee0>}
Or on the galaxy level
[4]:
print(gal.photo_lnu)
{'total': <synthesizer.photometry.PhotometryCollection object at 0x7f93f0565960>, 'total_attenuated': <synthesizer.photometry.PhotometryCollection object at 0x7f93f0567af0>, 'dust_emission': <synthesizer.photometry.PhotometryCollection object at 0x7f93f05664d0>, 'total_intrinsic': <synthesizer.photometry.PhotometryCollection object at 0x7f93f0566590>}
As before we can print the photometry.
[5]:
print(gal.photo_fnu["total_attenuated"])
------------------------------------------------------------------
| PHOTOMETRY (FLUX) |
|------------------------------------|---------------------------|
| JWST/NIRCam.F090W (λ = 9.02e+03 Å) | 3.97e+16 erg/(Hz*cm**2*s) |
|------------------------------------|---------------------------|
| JWST/NIRCam.F150W (λ = 1.50e+04 Å) | 1.31e+16 erg/(Hz*cm**2*s) |
|------------------------------------|---------------------------|
| JWST/NIRCam.F200W (λ = 1.99e+04 Å) | 2.15e+16 erg/(Hz*cm**2*s) |
|------------------------------------|---------------------------|
| JWST/NIRCam.F277W (λ = 2.76e+04 Å) | 4.62e+16 erg/(Hz*cm**2*s) |
|------------------------------------|---------------------------|
| JWST/NIRCam.F356W (λ = 3.57e+04 Å) | 1.90e+17 erg/(Hz*cm**2*s) |
|------------------------------------|---------------------------|
| JWST/NIRCam.F444W (λ = 4.40e+04 Å) | 4.43e+17 erg/(Hz*cm**2*s) |
------------------------------------------------------------------
Or plot them.
[6]:
gal.photo_fnu["total_attenuated"].plot_photometry(show=True)
[6]:
(<Figure size 350x500 with 2 Axes>,
<Axes: xlabel='$\\lambda_\\mathrm{obs}/[\\mathrm{\\AA}]$', ylabel='$F/[\\mathrm{\\rm{erg} \\ / \\ \\rm{Hz \\cdot \\rm{cm}^{2} \\cdot \\rm{s}}}]$'>)
[7]:
gal.photo_fnu["total_intrinsic"].plot_photometry(show=True)
[7]:
(<Figure size 350x500 with 2 Axes>,
<Axes: xlabel='$\\lambda_\\mathrm{obs}/[\\mathrm{\\AA}]$', ylabel='$F/[\\mathrm{\\rm{erg} \\ / \\ \\rm{Hz \\cdot \\rm{cm}^{2} \\cdot \\rm{s}}}]$'>)
[8]:
gal.photo_fnu["total"].plot_photometry(show=True)
[8]:
(<Figure size 350x500 with 2 Axes>,
<Axes: xlabel='$\\lambda_\\mathrm{obs}/[\\mathrm{\\AA}]$', ylabel='$F/[\\mathrm{\\rm{erg} \\ / \\ \\rm{Hz \\cdot \\rm{cm}^{2} \\cdot \\rm{s}}}]$'>)
Calculating light radii¶
Once we have photometry we can calculate the radius enclosing a given fraction of the light for a component. Here we’ll calculate the half light radius for both the intrinsic emission and the total emission in “F444W” in terms of luminosity, but before we can do that we need to get the particle spectra and call get_particle_photo_lnu
to first calculate the per particle photometry (above we used the galaxy level methods to calculate integrated spectra).
[9]:
# Get the particle spectra
pc_model.set_per_particle(True)
gal.stars.get_spectra(pc_model)
# Get the particle photometry
gal.stars.get_particle_photo_lnu(filters)
int_r50 = gal.stars.get_half_luminosity_radius(
"intrinsic", "JWST/NIRCam.F444W"
)
tot_r50 = gal.stars.get_half_luminosity_radius(
"stellar_total", "JWST/NIRCam.F444W"
)
print(int_r50, tot_r50)
0.014377885566053107 Mpc 0.014377519722890402 Mpc
Similarly to the “attr” radii we can compute for any particle component, we can also compute the radius enclosing any fraction of the light for any particle component.
[10]:
int_r20 = gal.stars.get_luminosity_radius(
"intrinsic", "JWST/NIRCam.F444W", frac=0.2
)
tot_r20 = gal.stars.get_luminosity_radius(
"stellar_total", "JWST/NIRCam.F444W", frac=0.2
)
int_r80 = gal.stars.get_luminosity_radius(
"intrinsic", "JWST/NIRCam.F444W", frac=0.8
)
tot_r80 = gal.stars.get_luminosity_radius(
"stellar_total", "JWST/NIRCam.F444W", frac=0.8
)
print(int_r20, int_r80, tot_r20, tot_r80)
0.009505522056712411 Mpc 0.02167682321866939 Mpc 0.009512729186537179 Mpc 0.021668008599445687 Mpc