Note
Go to the end to download the full example code.
Plot spectra by age¶
This example plots all the spectra for a single metallicity.
test_grid
target metallicity: 0.01
metallicity: 0.01
import argparse
import glob
import os
import cmasher as cmr
import matplotlib as mpl
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
from synthesizer.grid import Grid
# colourmap to use
cmap = cmr.bubblegum
# mapping of age to colour
norm = mpl.colors.Normalize(vmin=5.0, vmax=11.0)
def plot_spectra_age(grid, target_Z, spec_name="incident"):
# get closest metallicity grid point
grid_point = grid.get_grid_point(
log10ages=grid.log10age[0],
metallicity=target_Z,
)
# metallicity grid point
iZ = grid_point[1]
# get actual metallicity for that grid point and print it
Z = grid.metallicity[iZ]
print(f"target metallicity: {target_Z:.2f}")
print(f"metallicity: {Z:.2f}")
# initialise plot
fig = plt.figure(figsize=(3.5, 5.0))
left = 0.15
height = 0.8
bottom = 0.1
width = 0.8
# define main ax
ax = fig.add_axes((left, bottom, width, height))
# define colourbar ax
cax = fig.add_axes((left, bottom + height, width, 0.02))
# add colourbar
fig.colorbar(
cm.ScalarMappable(norm=norm, cmap=cmap),
cax=cax,
orientation="horizontal",
)
# colourbar formatting and labelling
cax.xaxis.tick_top()
cax.xaxis.set_label_position("top")
cax.set_xlabel(r"$\rm \log_{10}(age/yr)$")
# loop over log10ages
for ia, log10age in enumerate(grid.log10age):
# get spectra
Lnu = grid.spectra[spec_name][ia, iZ, :]
# Lnu = fnu_to_flam(grid.lam, Lnu)
# plot spectra
ax.plot(
np.log10(grid.lam),
np.log10(Lnu),
c=cmap(norm(log10age)),
lw=1,
alpha=0.8,
)
# plot Lyman and Balmer limits for reference
for wv in [912.0, 3646.0]:
ax.axvline(np.log10(wv), c="k", lw=1, alpha=0.5)
# add model name
ax.text(2.1, 21.5, grid.grid_name, fontsize=8)
# set wavelength range (log(Angstrom))
ax.set_xlim([2.0, 4.0])
# set luminosity range
ax.set_ylim([10.0, 22])
# add labels
ax.set_xlabel(r"$\rm log_{10}(\lambda/\AA)$")
ax.set_ylabel(
r"$\rm log_{10}(L_{\nu}/erg\ \
s^{-1}\ Hz^{-1} M_{\odot}^{-1})$"
)
# return figure and axes for further use
return fig, ax
if __name__ == "__main__":
# Get the location of this script, __file__ is the absolute path of this
# script, however we just want to directory
# script_path = os.path.abspath(os.path.dirname(__file__))
# Define the path to the test grid
# test_grid_dir = script_path + "/../../tests/test_grid/"
test_grid_dir = "../../tests/test_grid/"
parser = argparse.ArgumentParser(
description=(
"Create a plot of all spectra for a given metallicity in \
a grid"
)
)
# The name of the grid. Defaults to the test grid.
parser.add_argument(
"-grid_name",
"--grid_name",
type=str,
required=False,
default="test_grid",
)
# The path to the grid directory. Defaults to the test grid directory.
parser.add_argument(
"-grid_dir",
"--grid_dir",
type=str,
required=False,
default=test_grid_dir,
)
# The target metallicity. The code function will find the closest
# metallicity and report it back. The rationale behind this is that this
# code can easily be adapted to explore other grids.
parser.add_argument("-Z", "--Z", type=float, required=False, default=0.01)
# Flag whether to show the figure. Figure is saved in current
# directory using "spectra_age_{grid_name}"
parser.add_argument(
"-show", "--show", action=argparse.BooleanOptionalAction
)
# Flag whether to save the figure.
parser.add_argument(
"-save", "--save", action=argparse.BooleanOptionalAction
)
# Flag whether to analyse all grids in the provided directory.
parser.add_argument("-all", "--all", action=argparse.BooleanOptionalAction)
# Get dictionary of arguments
args = parser.parse_args()
# If all grids are requested get a list of the grids in the grid_dir
# directory.
if args.all:
grid_filenames = list(
map(os.path.basename, glob.glob(args.grid_dir + "*.hdf5"))
)
print(grid_filenames)
# Remove extension
grid_names = list(
map(lambda x: ".".join(x.split(".")[:-1]), grid_filenames)
)
print(grid_names)
# Else use the provided grid name
else:
grid_names = [args.grid_name]
# loop over all grid_names
for grid_name in grid_names:
print(grid_name)
# Initialise grid
grid = Grid(grid_name, grid_dir=args.grid_dir)
# Create figure
fig, ax = plot_spectra_age(grid, args.Z)
# show figure if requested
if args.show:
plt.show()
# save figure if requested
if args.save:
fig.savefig(f"spectra_age_{grid_name}.pdf")
Total running time of the script: (0 minutes 0.512 seconds)